I'll stop here. Cite your source for this, and your pastor doesn't count. This is exactly what I mean when I say "creationist douche-water dogma". This crap was boring before, so by now you're dead-air squared.
SUMMARY OF THE ORIGIN OF LIVING BEINGS IN THE UNIVERSE
The elements are produced in the new generating stars by the effect of thermonuclear reactions in the first phases of the formation of the stars. Many stars rise from the condensation of gases and dust dispersed by the outbursts of supernovas. The stars thus originated are more feasible to have habitable planets than the stars with a lower metallicity because the stars with a low metallicity have a shorter life, related to their thermonuclear activity;
thus, the stars with a low metallicity keep going active through so abbreviated time that they do not yield living beings to emerge and evolve on the planets orbiting them.
Most organic and inorganic compounds -especially water- are formed in the solar nebula thanks to fluctuations in the energy density, which causes phase transitions in the molecules that permit the spontaneous autosynthesis of simple organic and inorganic substances.
The water in the stellar nebulas permits the cooling of the interstellar medium, propitiating the synthesis of glycerol and more complex organic compounds, like ammonia, amino acids, lipids and perhaps globulins into holes and cracks of dust grains that contain water that suffers sudden phase transitions from solid phase to liquid phase and vice versa.
The ultraviolet radiation, the heat and other forms of stellar radiation, helped by condenser agents, cause the polymerization of simple compounds to make more organized molecules of hydrocarbons, carbohydrates, proteins and lipids, which are integrated like microscopic globules in the frozen water trapped by the granules of dust (fractals) of the planetary clouds.
When the planetary nebulas lower the temperature at a proper point, the spontaneous synthesis of microspheres with external membranes of lipoproteins occurs under the effect of UV radiation and the heat generated by the collisions among the particles of dust. The microspheres contain a larger diversity of organic compounds thanks to the agglomerative substrates that act like strata that facilitate the accumulation and interaction of substances; examples of agglomerative substrates are the granules of calcium phosphate, calcium carbonate, silicon carbide, graphite, fullerenes (allotropic forms of carbon) or Iron Sulfur -which can or cannot contain ice of water- and by the action of condenser agents (substances that promote the abiotic synthesis of simple and complex biomolecules; for example, HCN (Hydrogen Cyanide) and C2H2 (acetylene). These compounds are abundant in the interplanetary medium of early stars and it has been artificially confirmed that they act like condenser agents. The trials indicate that the biopolymerization of proteins and complex sugars is facilitated by these agents and by reactions promoted mainly by high energy bosons.
Going back to the microspheres, the particles of dust (fractals) suspended in the planetary atmospheres retain the microspheres into their holes and fissures. The dust grains work like protective shields of the biomolecules against the stars’ ionizing radiation, so the phase transitions permit the synthesis of more complex biomolecules, for example, waxes, phospholipids, proteins and lipoproteins. These molecules build highly stable and lasting membranes that contain a higher number of microspheres with diverse biological products; however, the single membranes are ephemeral because the radiation emitted by the stars that is received by the planets destroys them. However, many microspheres that are segregated from the surroundings by membranes or by membrane-like structures subsist in that hostile environment because they remain into dust grains containing icy water.
Due to their low resistance to the cosmic radiation, it is not feasible the synthesis of nucleotides in the interplanetary space. Probably, the nucleotides synthesize on the planets a long time after the emergence of the first living forms. Besides, the synthesis of molecules of nucleic acids does not occur spontaneously or no-spontaneously in nature. By this reason, the protobionts built in the planetary medium cannot have any form of nucleic acid (DNA or RNA).
The Gravitational Force of planets maintains to the small stellar dust grain accretions with microspheres wrapped by membrane amphiphilic in planetary orbits, forming dense clouds of dust, vapor of water, ammonia, acetylene, hydrogen cyanide, methane, carbon dioxide and other gases; however, the acceleration of the grains of dust and the intense heat emitted from the surface of the planets impede the setting down of the dust on the planetary surfaces. At later phases through the gestation of the planets, the water vapor condenses in the planetary atmospheres forming heavy drops that precipitate on the planetary soils dragging the grains of dust with and without microspheres with them.
Even suspended in the planetary atmospheres, the microspheres are agglutinated into the humid grains of dust to form prebiotic structures segregated by more complex amphiphilic membranes –known like protobionts- that are not yet living forms, but already experience transfers of energy as living forms (bionts) do.
When the planets chill fast and rains can occur, the fractals with and without protobionts are dragged down by the water drops unto the planets’ surfaces.
Once placed on the planetary grounds, resting on humid layers of soil or on the bottoms of shallow ponds, the protobionts can be maintained stable under dense clouds of dust and water vapor suspended in the planetary atmospheres which protect them from the intense cosmic radiation.
Thousands of millions of protobionts can be destroyed by the aggressive conditions of the planetary environments; nevertheless, when the planets make colder and the stars are less unstable, the basic structures of the protobionts can remain stable during more prolonged periods of time.
The difference consists of being in microenvironments with the basic factors that permit them to resist and prevail under the pressure of the early planetary environments.
The later chemical evolution depends on the amalgamation of protobionts, one to other, by electrochemical affinity. The protobionts fuse one to other forming vesicles with continuous membranes. Those complex vesicles rest on the humid soils or in the bottom of shallow or subterranean ponds. The fractures and holes of soils, full of chemical substances, are covered by the biomembranes establishing microenvironments chemically similar to the cytosol of modern cells. It blocks the osmotic catastrophe that would occur if the hypothesis of the "nutritious broth" of Oparin were real. The paleontology and geological observations clearly indicate that the "nutritious broths" have not existed and cannot exist in nature.
Once fused, some protobionts become into bionts by possessing molecular configurations that are apt to experience the biotic phase thanks to successive chemical structural changes in the biomembranes. This intricate configuration of biomembranes permits the aggregate of polypeptides and glycopeptides that promotes changes in the magnetic fields which start patterns of electrochemical gradients that establishes an electrodynamic field that permits the transfer of energy through particles. The bionts (living beings) self-synthesize through this system. It is the mechanism by which any living form existing anywhere in the universe emerges.
Let’s come back to the cosmic abiogenesis: The biomembranes extended on the bottoms of ponds, coating holes and cracks on soils packed with organic substances, carry out active transfers of fermions and compounds with the environment.
The incorporation of proteins, lipids, and other complex molecules to the cytosol promotes the formation of molecular structures specialized in the transfer of energy from the surroundings; for example, molecules of ATP Synthase, single RNA nucleotides, short molecules of RNA, NADP, ADP, etc. The small chains of RNA are synthesized by the autocatalytic proteins with biochemical affinity toward the nucleotides transferring the information of the amino acids sequences toward codifier molecules of RNA.